What you don't see...

...CAN hurt you

Sample Prep for Today's Analytical World

Christophe Deckers, M.Sc. Application Scientist, Sample Prep

christophe.deckers@agilent.com

Today's Agenda

Introduction

Addressing difficult samples

- 1. Polar analytes
- 2. High fat samples
- 3. How to get rid of interfering terpenes

Summary and Conclusions

Objectives of Sample Preparation

- Removal of interferences which would affect detection of analyte
- Removal of interferences that would affect instrument or column lifetime
- Concentration of an analyte to a detectable concentration

With news instruments - more Sample Preparation Techniques can be used

	More Specific		← Instrument Separation and Detection Specificity ←				← Lo	ess Specific	
	Less Specific		→ Sample Preparation Specificity			pecificity	→ More Specific		ore Specific
Sample Prep Technique Interference Removed	Dilute & Shoot	Filtration	Liquid/Liquid Extractions	Supported Liquid Extractions (SLE)	Dried Matrix Spotting	Precipitation	QuEChERS	Lipid Removal 'Hybrid' Filtration	Solid Phase Extraction
Lipids	No	No	No	Some	No	No	Yes	Yes	Yes
Oligomeric Surfactants	No	No	No	No	No	No	No	Yes	Yes
Particulates	No	Yes	No	Some	No	Yes	Yes	Yes	Yes
Pigments	No	No	No	Some	No	No	Yes	No	Yes
Polar Organic Acids	No	No	Yes	Yes	No	No	Yes	No	
Proteins	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Salts	No	No	Yes	Yes	No	No	No	No	Yes
Suggested Agilent Product	Agilent Autosampler Vials	Captiva Syringe Filters		Chem Elut		Captiva ND	Bond Elut QuEChERS	Captiva ND LIPIDS	Bond Elut Silica and Polymeric SPE

Agilent Captiva Filtration Products are recommended for use with any LC or LC-MS method

Today's Agenda

Introduction

Addressing difficult samples

- 1. Polar analytes
- 2. High fat samples
- 3. How to get rid of interfering terpenes

Summary and Conclusions

Polar analytes often require advanced solid phase extraction (SPE)

- Analyte is too polar for acetonitrile extraction
- Filtration is not clean enough
- Ion exchange can be used to filter polar interferences away
- We then often need an SPE phase that can bind a wide range of polar analytes that are basic, neutral and acidic

Bond Elut Packed Bed Phases – Which one!

Non-polar

C18, C8, C2, C1 C18 variations in carbon load and endcapping EnvirElut **CH** – cyclohexyl **CN-E** – endcapped cyano **PH** – phenyl ENV, LMS, PPL, Focus, Nexus **Bond Elut Plexa**

Polar

- **PSA** primary and secondary amine
- **NH2** aminopropyl
- **CN-U** –unendcapped cyano
- **DEA** diethylaminopropyl

Mixed mode IEX/NP

Certify – SCX/C8

Plexa PCX

Plexa PAX

Certify II – SAX/C8

Diol

Si - silica

Cation Exchange

- **SCX** benzenesulfonic acid
- **PRS** propylsulfonic acid
- **CBA** carboxylic acid

Reversible Covalent

PBA – phenylboronic acid

Specialty Phases AccuCAT Atrazine Etc.

Alumina – aluminum oxide **Florisil** – magnesium-silica Carbon Carbon/NH2

Anion Exchange

SAX – quaternary amine **PSA** – primary and secondary amine **NH2** – aminopropyl **DEA** – diethylaminopropyl

Bond Elut Plexa - A Different Type of Polymeric Sorbent • The hydroxylated ligands exist of

Plexa Recoveries Versus HLB – good results with a wide range of compounds

Analyte	Plexa	HLB	рКа	LogP
Albuterol	97.9	115.4	5.9	1.3
Atenolol	97.0	94.0	4.2	4.2
Loratadine	71.0	49.0	5.7	1.5
Metoprolol	92.0	74.0	5.7	1.5
Naltrexone	85.7	13.0	4.9	5.2
Pravastatin	85.0	59.0	4.9	5.2
Propranolol	55.0	35.0	4.9	5.2
Zolpidem	93.0	96.8	9.9	3.4

Plexa gives equivalent or better absolute recoveries than Oasis HLB for a wide range of pKa and logP compounds Conditions: Absolute Recovery from human plasma Basic load conditions, n=6, 200 ng/ml

Sorbent Conditioning - Why Do It?

Drying a silica-based Cartridge (ex: C18)

Over drying / lack of conditioning before sample application can contribute to

- low recoveries
- poor flow
- irreproducibility (high RSDs)

Examples on how polymeric SPE perform

Bond Elut Plexa / Phenols from Drinking Water

Bond Elut[™] Plexa[™]

Efficient Preparation of Phenols in Drinking Water

Advantage Statement: Varian's Bond Elut Plexa solid phase extraction (SFE) column has a very high extraction capacity for analytes and efficient removal of contaminants, making it ideal for extraction of phenols from drinking water. Plexa features a unique structure never before seen in standard styrene divinyl benzene polymer SFE columns, whereby polarity is separated between a hydrophilic exterior and hydrophobic core (Figure 1).

Figure 1. Varian Bond Bat Resa retention, washing and elution mechanisms

Figures 4 and 5 show a comparison of extraction for one of the analytes in the phenol class, between a styrene divinyl bezene. N-vinyl pyrolidone SPE and Varian Bond But Plesa.

18.85

1.00.00

Sample preparation method of phenols in drinking water using Varian Bond Elut Plexa (200 mg)

Bond Elut PPL - EPA 528 Phenols from Drinking Water

Method 528 provides procedures for the determination of <u>phenols in finished drinking</u> <u>water</u>. The method may be applicable to untreated source waters but has not been evaluated for these uses. The method is applicable to a variety of phenols that are efficiently partitioned from the water sample into a modified PSDB SPE sorbent (Varian's PPL) and is sufficiently volatile and thermally stable for gas chromatography.

Extraction is performed by passing a 1L water sample through a SPE cartridge with 500mg modified PSDB (PPL). The phenols are eluted with methylene chloride.

ANALYTE	CAS NUMBER	
phenol	108-95-2	
2-chlorophenol	95-57-8	
2-methylphenol (o-cresol)	95-48-7	
2-nitrophenol	88-75-5	
2,4-dimethylphenol	105-67-9	
2,4-dichlorophenol	120-83-2	
4-chloro-3-methylphenol	59-50-7	
2,4,6-trichlorophenol	88-06-2	
2,4-dinitrophenol	51-28-5	
4-nitrophenol	93951-79-2	
2-methyl-4,6-dinitrophenol	534-52-1	
pentachlorophenol	87-86-5	

Determination of Organophosphates in Lake Water: Bond Elut PPL SI-02094

Julia Regnery, Goethe-Universität Frankfurt, Institut für Atmosphäre und Umwelt, AG-Umweltanalytik, 60438 Frankfurt, Germany, Elisabeth Korte, Varian Deutschland GmbH

Chlorinated organophosphates are used as flame retardants in insulation foams, paints, coatings, plastics, and textiles while the non-chlorinated ones are mostly used as plasticizers. The compounds have been detected in air, sediment and soil, sewage sludge, streams and lakes. Particularly the chlorinated organophosphates are known to persist in the aquatic environment.

• Because of the low concentration of the analytes in the water sample an enrichment step is necessary.

0 || R¹0~^P~OR³ R²0

SPE Conditions

- Cartridge: Bond Elut PPL, 100 mg sorbent in 1 mL cartridge Condition: 1 mL methanol, 1 mL methanol / acetonitrile (1/1) Apply 1.5 -2.5 L water sample
- Dry the cartridge using nitrogen
- Elution with 3 x 333 μ L methanol / acetonitrile (1/1)

Results

The simple clean-up and enrichment with SPE has the advantage that up to 20 water samples can be extracted simultaneously without using complex apparatus. Bond Elut PPL has been proven to be a robust sorbent with high capacity for the extraction of polar and medium polar analytes.

Analyte	Recovery (%)	LOD (ng/L)	Quantifiying ion m/z
Tris(1-chloro-2-propyl)-phosphate (TCPP)	91	1	99
Tris(2-chloroethyl)-phosphate (TCEP)	95	2	63
Tris(1,3-dichloro-2-propyl)-phosphate (TDCP)	99	1	75
Tri-n-butylphosphate (TnBP)	89	1	99
Tri-isobutylphosphate (TiBP)	85	2	99
Tris(2-butoxyethyl)-phosphate (TBEP)	93	3	125

Table 1. Recoveries and LODs of organophosphates; extracted from the water sample with SPE.

Conclusion

Novel polymeric SPE phases are recommended:

They have double the binding capacity over silica
 They can bind a wide range of polar analytes
 They don't decondition/dry out on the SPE manifold
 They provide more robust methods

Today's Agenda

Introduction

1

Addressing difficult samples

1. Polar analytes

2. High fat samples

3. How to get rid of interfering terpenes

Summary and Conclusions

Remove interferences...

- To acquire desired sensitivity/selectivity
- To reduce contamination/carryover issues
- Use of sensitive and expensive instruments: <u>Protect your</u> <u>investment!!!</u>

Lipids

Matrices and Approximate Total Lipid Content

<2%	4-12% >		12%		
Low		Med		Н	ligh
Spinach (0%) Strawberry (0%)	Soy Milk (4%) Beef Liver (4%)			ers (16%) ocado (21%)	
Onion (0%)	Pork Liver (4%)	Pork (Q0/)	Salmon (27%)	
Paprika (1%)	Corn (4%)	Trout (8%)	Soy Oil (1	00%)
Cumin (2%)	C	Chocolate (8%)		Avocado Oil (1	00%)
Rice (2%)	Can	Canned Pet Food (~10%) Cow's Milk (5%) Carp (12%		Canola Oil (1	00%)
Hops (2%) Tilapia (2%)					00%)
Sea Bass (3 Wheat (3))(/)	Plasma or (10 – 20 %	whole blood		

Current Procedures for Lipid Removal

Method	How Lipids are removed	Weakness		
Dilute and Shoot	No lipid removal, only dilution	No lipid removal		
Protein Precipitation	PPT followed by centrifugation	Insufficient lipid removal		
	PPT followed by filtration with or without sorbent	Insufficient lipid removal; low analyte recovery		
QuEChERS	PSA/C18 sorbent (dSPE)	Not selective; insufficient lipid removal; analyte loss		
	Zr-containing sorbent	Low total lipid capacity; analyte recovery		
	Freeze sample	Time needed; loss of analyte		
SPE/SLE	Load and elute	Time needed; solvent usage; extensive method development		
SEC/GPC	Chromatographic separation	Uses copious amounts of solvent and time; capital expense		

EMR-Lipid Enhanced Matrix Removal

EMR: As easy to use as QuEChERS; as clean as SPE

EMR Product offering

EMR fits into current sample preparation workflows

EMR Sorbent - What is it?

1.0 g EMR in 15 mL tube

When "activated" by water...

- The materials selective hydrophobic interactions increase.
- Suspension of nano particles (high surface area).
- Rapidly interacts with straight chain, "lipid-like" functional groups.

Centrifugation preferably used to separate precipitate from solution (*not filtration*).

EMR-Lipid Mechanism – Size exclusion and hydrophobic interaction.

... and what does it do?

EMR sorbent removes Lipids

A class of naturally occurring hydrocarbon containing compounds commonly known as fats and oils

What Does EMR *NOT* Interact With?

EMR does NOT remove analytes of interest

Exceptions?

Compounds containing long aliphatic functional groups (e.g. prostaglandins)

EMR Fits into Existing Workflows

QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe)

 Easy-to-use sample preparation for food testing, solid samples (e.g. vegetables, fruits, meat, seafood, etc.)
 EMR Applications: - Pesticide Residues in Avocado,

Modified Liquid Extraction (Protein Precipitation)

 Proteins are removed by a "crash" step prior to injection or cleanup (e.g. milk, meat, seafood, etc.)

EMR Applications: - PAHs in Salmon,

- Veterinary Drugs in Bovine Liver

Improving dSPE in QuEChERS

1. Extraction

Weigh sample

Add water and OC spikes if needed and spike with internal standard

Vortex or shake

Add salt packet

Shake 1 minute

Centrifuge at 4000 rpm for 5 minutes

Phase separation of acetonitrile and aqueous layer

Pros

- Fast and inexpensive
- Takes minimal experience
- Doesn't require special equipment
- Accommodates multiple matrices
- Accommodates large analyte groups

Cons

Large amount of coextractives

2. Dispersive SPE

Choose the dispersive cleanup kit and add acetonitrile extract

Vortex for 1 minute

Centrifuge at 4000 rpm for 5 minutes

Take aliquot of supernatant and dry down or dilute as necessary Place in autosampler vials for GC or LC analysis

Pros

Same as extraction

Cons

- Minimal cleanup provided
- Can remove analytes
- Lipids are challenging to remove selectively

EMR – Lipid – dSPE Cleanup

- A. QuEChERS or Liquid Extract
- B. Add H₂O to EMR tube ("activation")
- **C.** Transfer extract
- **D.** Vortex and centrifuge
- E. Supernatant (1:1; extract: H₂O)

EMR – Polish – ACN/H₂O Phase Separation

- A. Add supernatant to EMR Polish tube
- **B.** Vortex immediately
- C. Phase separation after centrifuge
- **D.** Transfer upper layer for analysis
- E. Final samples split for GC and LC analysis
- F. Extra dry step recommended prior to GC

EMR Workflow

Extract dSPE Polish Dry

In acetonitrile Or acetone

GC-MS Fullscan Avocado

GC-MS Fullscan Avocado

GC-MS Fullscan Pet Food

GC-MS Fullscan Pet Food

GC-MS Full Scan– Avocado Oil

GC-MS Spinach Fullscan

Time-->

Benefits to Instrumental Flowpath

Comparison of Analytes Response Consistency over Multiple Avocado Sample Injections

Analytes Responses Reproducibility on GC/MS/MS over 100 Injections of Avocado Samples

Desticides	Analytes RSD	over 100 injection	s on GC/QQQ (n = 20)	RSD over 50 injections on GC/QQQ (n = 10)			
Pesticides	EMR Cleanup	C18/PSA cleanup	Zirconia sorbent cleanup	EMR Cleanup	C18/PSA cleanup	Zirconia sorbent cleanup	
Dichlorvos	6.2	10.5	16.8	2.2	9.4	6.3	
2-Phenylphenol	7.0	13.6	19.5	5.0	12.4	8.4	
Ethalfluralin	12.4	18.8	32.0	5.8	10.3	7.9	
Sulfotep	7.1	11.8	17.2	3.1	6.4	10.8	
Atrazin	6.8	12.2	19.1	3.2	12.2	5.2	
Lindane	8.5	10.8	20.0	4.6	10.9	5.1	
Chlorothalonil	12.5	11.7	37.4	8.0	12.9	11.0	
Diazinon	6.6	11.7	16.9	4.4	10.5	5.6	
Chlorpyriphos- methyl	8.4	8.9	14.9	3.8	8.6	6.6	
Dichlorfluanid	11.7	9.0	25.9	5.4	9.9	5.5	
Aldrin	9.8	19.3	25.7	8.6	19.3	7.1	
Tolylfluanid	10.5	6.6	17.8	4.2	6.9	6.6	
Captan	29.9	51.9	47.1	11.1	24.9	21.7	
Procymidone	6.8	14.3	22.5	5.6	13.8	4.8	
Bupirimate	6.8	10.4	20.7	7.6	11.0	6.2	
Endrin	8.3	12.6	24.1	5.9	13.8	5.4	
Endosulfan sulfate	8.5	12.1	22.4	5.3	12.7	6.4	
DDT	21.6	22.4	42.6	6.4	12.0	11.8	
Iprodione	11.0	10.7	40.0	8.2	10.9	16.3	
Permethrin	6.8	11.8	18.8	5.2	11.2	8.6	
Parathion ethyl- D10 (IS)	11.8	7.2	13.0	4.7	6.8	7.0	
TPP (IS)	9.1	19.9	28.3	9.0	22.5	12.8	

MS Source Critical Tuning Parameters

67 Pesticides Analysis in Avocado by LC and GC-QQQ

Representative Pesticide	Chemical Class	Pesticide Group	Detection Technique	Representative Pesticide	Chemical Class	Pesticide Group	Detection Technique	Representative Pesticide	Che mical Class	Pesticide Group	Detection Technique
Dichlorvos	P Organophosphate	Herbicide		Methamidophos	Organoph osp hate			Simazine	Triazine	Herbicide	LC-MS
Sulfotep		e		Acephate				Sebuthylazine			
Diazinon				Omethoate				Terbuthylazine		Algaecide	
Chlorpyriphos methyl				Dimethoate				Ċarbofuran	Carbamate	Insecticide	
Coumaphos				Phosmet				Methiocarb			
Trichlorfon				Carbaryl	Carbamate			Chlorpropham			
Lindane	Organochlorine	Insecticide		Propoxur	Carbanace		LC-MS de	Propham		Herbicide	
Aldrin		Fungicide Herbicide	cide	Dichlofluanid	Sulphamide	Fungicide		Monuron	Urea		
Endrin				Tolylfluanid				Chlorotoluron			
DDT				Carbendazi m	Benzimidazole			Diuron			
Endosulfan sulfate				Thiabe ndazole				Fluometuron			
Methoxychlor				Thiophanate methyl				Isoproturon			
2-Phenylphenol	Phenol			Cyprodinil	Anilinopyrimidine			Metobromuron			
Atrazine	Triazine			Imidacloprid	Neonicotinoid			Siduron			
Bupirimate	Pyrimidinol			Pymetrozine	Pyridine			Linuron			
Chlorothanil	Chloronitrile			Imazalil	Imidazole	Fungicide		Neburon			
Captan		thalimide Fungicide		Penconazole	Triazole			2,4-D Acid	Chlorophenoxyacid Chloracetanilide Unclassified		
Folpet	Phthalimide Fungicide Dicarboximide			Aminocarb	Carbamate	Insecticide		Dichl orprop			
Captafol				Oxamyl				Metazachlor			
Iprodione				Methomyl				Bentazon			
Procymidone			Aldicarb				Malathion				
Permethrin	Pyrethriod Insecticide	Inserticide		Fenuron	Urea	Herbicide		EPN	OP	Insecticide	
Deltmethrin			Metoxuron	UIEd	nerorue		Терр-А	0	Insecticide		
Pyraclostrobin	Strobilurin	Fungicide						Monocrotophos			
Ethalfluralin	Dinitroaniline	Herbicide									

QuEChERS-EMR Protocol for Multi-residue Analysis of Pesticides in Avocado

⁴⁶

Comparison of Avocado Co-extractives by Weight

Cleanup	Amount of co- extractives (mg, n= 3)	Amount of co- extractives removed by cleanup (mg, n = 3)	% of matrix co- extractives removed by cleanup	
No further cleanup	14.7			
C18/PSA Cleanup	9.5	5.2	35.4	
EMR-Lipid Cleanup	4.2	10.5	71.4	
Zirconia sorbent Cleanup	7.0	7.7	52.4	

% Matrix Co-extractives Removed by Cleanup = $\frac{Amount of Co-extractives Removed after Cleanup}{Amount of Co-extractives without Cleanup} \times 100\%$

The use of EMR material cleanup removes extra 20-30% of Avocado co-extractives in comparison to traditional QuEChERS and/or competitor's cleanup

Comparison of GC/MS Full-scan Chromatogram for Matrix Background

The use of EMR material cleanup provides significantly cleanup chromatographic sample background.

Comparison of GC/MS/MS MRM Chromatogram for Matrix Background

Chromatographic Benefits of Matrix Removal Provided by EMR Cleanup

Selected Problematic Pesticides for Recovery Comparison

Statistical Recovery Results Comparison

Method Accuracy and Precision

Summary and Conclusion

- EMR-Lipid provides the most complete lipid removal of any sorbent on the market.
- Achieve SPE cleanliness with dSPE simplicity.
 - EMR is a one size fits all sorbent for a variety of sample types and analytes.
- Key applications were validated with EMR and demonstrate better recovery, better precision, and decreased matrix impact to the instrument and results.

Today's Agenda

Introduction

Addressing difficult samples

- 1. Polar analytes
- 2. High fat samples

3. How to get rid of interfering terpenes

Summary and Conclusions

Constituents of Cannabis and Hop: Complex

- Nitrogenous compounds (27 known)
- Amino acids (18),
- Proteins (3)
- Glycoproteins (6)
- Enzymes (2)
- Sugars and related compounds (34)
- Hydrocarbons (50)
- Simple alcohols (7)
- Aldehydes (13)
- Ketones (13)
- Simple acids (21)
- Fatty acids (22)
- Simple esters (12)
- Lactones (1)
- Steroids (11)
- Terpenes (120)
- Non-cannabinoid phenols (25)
- Cannabinoids (66)
- Flavonoids (21)
- Vitamins (1) [Vitamin A]
- Pigments (2)
- Elements (9).

· Terpenes are composed of two or more isoprene

 The isoprene units will maintain its isopentyl, usually with modification of the isoprene double bonds.

Structure of Terpenes

сна 1 н₂с=с-сн—сн₂

isoprore

c-c-c-c

an isoprene unit (may have double bonds)

units.

R1 = OH, R2 = isoprenyl, R3 = H

R1 = COOH, R2 = C5H11, R3 = H

QuEChERS AOAC Extraction/Partitioning with Custom dSPE versus Universal dSPE: Hops

QuEChERS AOAC Extraction/Partitioning with Custom F dSPE versus Universal dSPE: Hops

QuEChERS AOAC Extraction/Partitioning with Custom F dSPE versus Universal dSPE: Hops

Pesticide Recovery after QuEChERS AOAC with Custom F dSPE or Universal dSPE: Hops

Conclusion

Addressing difficult samples

- 1. Polar analytes : Explore new polymeric SPE phases
- 2. High fat samples: Consider EMR Lipids as a dSPE
- 3. How to get rid of interfering terpenes: stay tuned \odot

