

Analyzing Difficult Projects: Ethofumesate/Sugar Beet

Riza Punongbayan, Fabiola Zuno, Tey Montalvo

IR-4/Trace Analytical Laboratory Department of Environmental Toxicology University of California, Davis

* "Analytical Method for the determination of Ethofumesate and major metabolites in grass and sugar beets (Improved Method)", J. D. Manley, M. D. Reeve, and P. J. Snowdon, Dated 2nd April, 1986.

Issues:

- 1.GC-FPD vs. LC-MS/MS
- 2.Extraction and cleanup of ethofumesate
- **3.Separate extraction for metabolites**
- 4.SPE cleanup
- **5.Additional cleanup for roots samples**
- 6.Time consuming and labor intensive method

1. GC/FPD vs. LC-MS/MS

- Did not have a GC/FPD in the lab
- LC-MS/MS allowed for smaller sample size, which led to less solvent usage
- Eliminated acetylation step for NC 8493
- Did not have to use MPDMS

Ethofumesate (NC 8438) 2-ethoxy-2,3-dihydro-3,3dimethyl benzofuran-5-yl methane sulphonate

NC 8493 2,3-dihydro-2-hydroxy-3,3dimethyl benzofuran-5-yl methane sulphonate

NC 9607 2,3-dihydro-3,3-dimethyl-2-oxo-benzofuran-5-yl methane sulphonate

2. Extraction and cleanup of ethofumesate

Large Number of Samples

- 13 field trials including a decline study
- 272 field samples (roots and tops)

Soxhlet

Vs

Shaker

Reference Method Using Soxhlet*: VS.

Overnight extraction with maximum 8 samples per set IR4 working method using shake, soak, and filter:

Overnight extraction with up to 20+ samples per set with significantly less solvent used

Bonus: Peaceful sleep!

* "Analytical Method for the determination of Ethofumesate and major metabolites in grass and sugar beets (Improved Method)", J. D. Manley, M. D. Reeve, and P. J. Snowdon, Dated 2nd April, 1986.

Ethofumesate Sample Cleanup

* "Analytical Method for the determination of Ethofumesate and major metabolites in grass and sugar beets (Improved Method)", J. D. Manley, M. D. Reeve, and P. J. Snowdon, Dated 2nd April, 1986.

3. Separate extraction for metabolites

*"At-Harvest Ethofumesate derived residues in or on sugar beet roots and tops following sequential application of Nortron SC and Betamix at the highest recommended pre-emergence plus post-emergence rate combination, USA 1993", AgrEvo Study Number B-93R-03 dated April 25, 1995.

*"At-Harvest Ethofumesate derived residues in or on sugar beet roots and tops following sequential application of Nortron SC and Betamix at the highest recommended pre-emergence plus post-emergence rate combination, USA 1993", AgrEvo Study Number B-93R-03 dated April 25, 1995.

Hydrolysis of NC 8493 and NC 9607:

- Removal of ethofumesate prior to acid hydrolysis was very important because it converted to NC 8493 during acid hydrolysis.
- Unexpected challenge was the loss of NC 9607 during hydrolysis step.
 - Ran an experiment with samples at 30 minute intervals.
 - Recoveries for NC 9607 after 60 minutes in acid were ~70%. After 90 minutes recoveries were 40-60%
 - For incurred residues, the samples needed a minimum of 2.5 hours.

5. SPE Clean-up issues for both crop fractions

Florisil SPE cartridges did not work. Tried different sizes, phases and combinations of phases including alumina, silica, C18, Strata-X, Cucarb, NH2

In the end we had to pack our own florisil columns. Florisil was activated in a ~100°C oven overnight.

5. Additional Cleanup for Roots Samples

NO PROBLEM! After acid hydrolysis, the roots extracts were a dark amber color. This added additional cleanup challenges for NC 9607.

BIG PROBLEM! (for NC 9607 only)

We added a silica SPE cleanup after florisil.

From our previous R&D, we knew that silica SPE would not work for cleanup of both metabolites, so we had to split the sample.

6. Time consuming and labor intensive method

- Overnight extraction for one compound
- Separate extraction for metabolites
- Separate analytical runs for parent and metabolites. For roots samples, we injected samples for each compound separately

Glassware intensive

Working together, we were able to

- Run 2 sets per week, with ~20 samples per set.
- One analyst completed parent analysis while the other moved on to metabolite extraction.

The whole project including R&D, analysis, and ASR took almost a year.

Fabiola's next project:

Nikolas Trong Zuno-Nguyen

Thank You!