UV Crop Treatment

The Dragon

Mark Rea, PhD

Professor, Light and Health Research Center Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai mark.rea@mountsinai.org

Icahn Lig School of Re Medicine at **Mount** Sinai

Light and 1 Research C

Why UV-C [254 nm]?

- ▶ Pathogen DNA absorbs and is damaged by UV-C, preventing replication
- UV-C treatment has shown efficacy in various crops
 - Strawberries (PM)
 - Grapes (PM)
 - Squash/Cucurbits (PM, ALS)
 - Zinnias (PM)
 - Beets (CLS) ongoing trials
- ► No residue
- Zero re-entry interval
- Zero preharvest interval
- No induced resistance

Configuration is variable to suit different farms/crops

Cucumber (side-row)

Cucumber

Strawberries

© 2022 Light and Health Research Center at Mount Sinai / July 2022

Unit construction

View of Tubular Lamp UV-C Sources

© 2022 Light and Health Research Center at Mount Sinai / July 2022

- Current units are farm built •
- DIY plans available • https://tinyurl.com/make-a-dragon

Crop example: Strawberry powdery mildew (PM)

- ▶ Weekly UV-C (85 J·m⁻²) produced better control than conventional fungicide
- Highly cost-effective management approach

Crop Example: Angular leaf spot (ALS) on zucchini

 UV-C treated plants had lower disease severity (p < 0.05) and were noticeably more advanced and vigorous

© 2022 Light and Health Research Center at Mount Sinai / July 2022

UV-C safety

- Similar to chemical pesticide safety
- Tractor cab glass blocks UV-C
 No extra PPE required
- Cover exposed skin (pants and long sleeve shirt)
- Protect eyes with
 - face shield or -
 - safety glasses

https://www.deere.com/en/tractors/row-croptractors/row-crop-7-family/comfortvisibility/

UV-C technology advancements

- ► UV-C LED sources are rapidly evolving
 - No hazardous glass or Hg
 - Integration into other equipment
 - Speed of dosing improvements more economical
 - \$ / watt is expected to be equivalent to current sources by 2025

Electronics Weekly, 26 March 2019

Thank You

https://icahn.mssm.edu/research/light-health

