

Vestaron Peptide-Based Insecticides Benefits of Bioinsecticides with the Performance of Synthetics

Christopher Gee, Ph.D. Field Development Manager, Northeast

Vestaron IR-4 research priorities

Vestaron appreciates involvement in previous and current IR-4 research projects

Selection of recent projects involving Vestaron products:

- IS00397-22
- IS00405-22
- IS00357-20
- IS00357-21

Peptide Bioinsecticides

Fractionation of Crude Peptides

Nature has used peptides as bioinsecticides for millions of years

Where to start? Nature: predators with bioactive venom

Animal venoms contain hundreds of different proteins/peptides

- Digestive enzymes
- Antimicrobial peptides
- Defense peptides
- Insect-selective peptides

A peptide is selected for engineering into a new custom peptide for use as a pesticide

Through proprietary production techniques, Vestaron builds peptides to intensify potency, increase selectivity, and improve formulation and handling characteristics

- Isolate the active peptide
- Optimize the peptide for potency and selectivity
- Use a GMO-engineered yeast to produce the peptide with fermentation
- Filter out the yeast cells and concentrate the peptide
- Formulate and package
- Apply as any other product

Fermentation

Filtration & concentration

Vestaron's Peptides "Re-Drug" Proven Insecticidal Receptors as Traditional Chemical Insecticides

Vestaron's pipeline offers the opportunity to "reset the resistance clock", addressing proven, multi-billion dollar receptor targets with safe and environmentally-friendly peptides

Vestaron family of products

Specialty crops

Row crops

Soft-bodied insects Field and greenhouse

Liquid Btk facilitator

Spear Mode of Action

Attributes

Target site specificity

- Nicotinic Acetylcholine Receptor Allosteric Modulators - Site II
- Binding site different from spinosyns and neonicotinoids
- Awarded new IRAC Group 32 in Nov 2018
- The 14th neuromuscular IRAC group
- Unique binding site allows Spear to control insects resistant to diamides, Spinosins, and neonicatinoids

Route of Entry: Spear T

Contact - Through spiracles: Through spray covered is necessary

Soft Body Insects:

- Aphids,
- Whitefly,
- Thrips,
- Others (see Label)

Ingestion – combined with a sublethal dose of an active Bt for entry through the insect gut

Lepidopteran Insects:

- Codling moth
- Loopers
- Leafrollers
- Diamond back moth
- Fruitworms
- Armyworms
- others (see Label)

Ecotoxicology - Pollinators

Study	Result
Honey Bee Oral Toxicity (Apis mellifera)	LD ₅₀ (48-hour) > 100 μg ai/bee
Honey Bee Contact Toxicity (Apis mellifera)	LD ₅₀ (48 hour) > 25 μg ai/bee
Honey Bee Larval Toxicity (Apis mellifera)	LD ₅₀ (72 hour) > 68.60 μg ai/bee
Honey Bee Adult Chronic Dietary Toxicity (Apis mellifera)	$LC_{50} > 5000 \mu g/kg$, $LDD_{50} > 132 \mu g$ ai/bee
Bumble Bee Acute Oral Toxicity (Bombus impatiens)	LD ₅₀ (48 hour) > 100 μg ai/bee
Solitary Bee Contact Toxicity (Osmia bicornis)	LD ₅₀ (48 hour) > 31.3 μg ai/bee

Spear® peptide shows no indication of acute or chronic toxicity in bees up to the highest dose levels tested

Summary of Benefits

Safety Profile

- Biologically based
- Worker, vertebrate, pollinator, residue safety
- Little to no impact on natural enemies, no harmful residues
- Low risk of plant phytotoxicity

Insecticide resistance management

- New IRAC group 32
- No cross-resistance and no current resistance
- Incorporation into rotations with other modes of action

Versatility

- O-d PHI, 4-hr REI, MRL-exempt
- 2-yr shelf life at room temp
- Substitution for conventional products
- Pre-harvest application for residue management
- Tool for all external feeding lep species

Introducing Basin Flex

- Basin Flex is the 2nd generation peptide insecticide from Vestaron
- It exhibits excellent control of lepidopteran pests, with no offtarget effects
- There is strong evidence supporting Basin Flex possesses yet another novel MoA. Currently under review by IRAC.

U1-AGTX-Ta1b: Insect-Specific Peptide

- The structure is a 3-disulfide stabilized helical bundle
- Isolated and characterized from Hobo Spider (family Agelenidae).
- Potent, broad-spectrum insecticide, particularly strong activity on lepidopteran and coleopteran pests.
- Can be manufactured at high titers in Vestaron's production platform.

Ta1b is <u>not</u> orally active against lepidopteran pests

CEW Leaf Disk Feeding Assay

100-Δillerow ω/κ-GS-HXTX-Hv1a SPEAR LEP Dose (mg/mL)

Drosophila melanogaster Oral Activity

Ta1b lacks bioavailability in Lepidopterans (corn earworm) but not Dipterans (Fruit Fly)

Basin is Degraded by Trypsin-Like Proteases in the Insect Gut

M. sexta (Tobacco hornworm)

Tobacco Hornworm Gut Extract Digestion

Bovine Trypsin

Bovine Chymotrypsin

Basin is degraded by insect gut proteases, likely due to trypsin-like enzymes

R9Q is Stable and Active

In vitro Gut Extract Stability

Tobacco Hornworm (MGE)

Fall Armyworm (FAW)

Corn Earworm (CEW)

R9Q Confers Oral Activity Against Lepidopterans

CEW Leaf Disk Feeding Assay

Stabilizing Basin to proteases results in orally bioavailable peptide

Replicated Field Trial Diamondback moth Broccoli Central Coast, CA, 2022

Percent control of larvae relative to UTC

% control based on SAUDPC of total larvae counts UTC SAUDPC = 1.77/5 leaves

Basin Flex shows commercial standard level of control in the field

Navel Orangeworm Almond Central Valley, CA 2021

Percent nut damage at harvest

Nut damage protection as good as industry standard Numerical but not statistically-significant rate response

Summary

- Characterization and stabilization of U1-AGTX-Ta1b to trypsin-like proteases resulted in an orally active insecticide
- Basin Flex is currently under evaluation by EPA
- Expected initial commercial activity in 2024

VST - 7300 (Basin) - Q4 2023

VST - 6700

VST - 7900

AT MORNING YOU

VST - 8400

VST - 8500

A rich pipeline of new, novel Als with defined modes of action for insecticidal & fungicidal activity. **All new MOAs!**

